Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Improvement of JASMINE code for ex-vessel molten core coolability in BWR

Matsumoto, Toshinori; Kawabe, Ryuhei*; Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Maruyama, Yu

Annals of Nuclear Energy, 178, p.109348_1 - 109348_13, 2022/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The Japan Atomic Energy Agency extended the applicability of their fuel-coolant interaction analysis code JASMINE to simulate the relevant phenomena of molten core in a severe accident. In order to evaluate the total coolability, it is necessary to know the mass fraction of particle, agglomerated and cake debris and the final geometry at the cavity bottom. An agglomeration model that considers the fusion of hot particles on the cavity floor was implemented in the JASMINE code. Another improvement is introduction of the melt spreading model based on the shallow water equation with consideration of crust formation at the melt surface. For optimization of adjusting parameters, we referred data from the agglomeration experiment DEFOR-A and the under-water spreading experiment PULiMS conducted by KTH in Sweden. The JASMINE analyses reproduced the most of the experimental results well with the common parameter set, suggesting that the primary phenomena are appropriately modelled.

Journal Articles

Experimental study of liquid spreading and atomization due to jet impingement in liquid-liquid systems

Yamamura, Sota*; Fujiwara, Kota*; Honda, Kota*; Yoshida, Hiroyuki; Horiguchi, Naoki; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 34(8), p.082110_1 - 082110_13, 2022/08

 Times Cited Count:2 Percentile:37.96(Mechanics)

Liquid spreading and atomization due to jet impingement in liquid-liquid systems are considered to be crucial for understanding the cooling behavior of high-temperature molten material in a shallow water pool. This phenomenon takes place when a liquid jet enters a pool filled with other immiscible liquid. The jet spreads radially after impinging on the floor while forming a thin liquid film and atomizing droplets. In this paper, we explain the result to quantify the unsteady three-dimensional behavior of the spreading jet by the employment of 3D-LIF measurements and 3-dimensional reconstruction. Under high flow velocity conditions, the phenomena of hydraulic jump and atomization of the liquid film occurred along with the spreading. To evaluate the spreading behavior, a comparison of the jump radius position of the liquid-liquid system as the representative value was made with the one calculated by the existing theory of a gas-liquid system. As the result, the spreading of the liquid film in the liquid-liquid system was suppressed compared with that in the gas-liquid system. Furthermore, the PTV method was successfully used to measure the velocity boundary layer and velocity profile in the liquid film, which are important factors that affect the spreading mechanism of the liquid film. These results revealed that in liquid-liquid systems, shear stress at the liquid-liquid interface causes a decrease in the flow velocity and suppressed the development of the velocity boundary layer. Also, to evaluate the atomization behavior, the number and diameter distribution of the droplets were measured from the acquired 3-dimensional shape data of the jet. As the result, the number of droplets increased with the flow velocity. Based on these results, we concluded that the spreading of the liquid film is affected by such atomization behavior.

Journal Articles

Melt impingement on a flat spreading surface under wet condition

Sahboun, N. F.; Matsumoto, Toshinori; Iwasawa, Yuzuru; Sugiyama, Tomoyuki

Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 15 Pages, 2021/10

Journal Articles

Experimental and analytical investigation of formation and cooling phenomena in high temperature debris bed

Hotta, Akitoshi*; Akiba, Miyuki*; Morita, Akinobu*; Konovalenko, A.*; Vilanueva, W.*; Bechta, S.*; Komlev, A.*; Thakre, S.*; Hoseyni, S. M.*; Sk$"o$ld, P.*; et al.

Journal of Nuclear Science and Technology, 57(4), p.353 - 369, 2020/04

 Times Cited Count:14 Percentile:71.27(Nuclear Science & Technology)

Journal Articles

Present status of the L3BT for J-PARC

Okawa, Tomohiro*; Ao, Hiroyuki; Ikegami, Masanori*

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.251 - 253, 2005/07

L3BT is a beam transport line from J-PARC (Japan Proton Accelerator Research Complex) linac to the succeeding 3-GeV RCS (Rapid Cycling Synchrotron). Recently, the positions of the debunchers in L3BT are revised to optimize the momentum spread at the RCS injection. In this paper, results of the beam simulation of the L3BT with the new debuncher locations are presented. The construction status of the L3BT is also presented in brief.

Journal Articles

Instrumentation for measurement of beam energy spread

Okumura, Susumu; Miyawaki, Nobumasa; Kurashima, Satoshi; Yoshida, Kenichi; Fukuda, Mitsuhiro; Ishibori, Ikuo; Agematsu, Takashi; Nara, Takayuki; Nakamura, Yoshiteru; Arakawa, Kazuo

Proceedings of 17th International Conference on Cyclotrons and Their Applications (CYCLOTRONS 2004), p.410 - 412, 2005/00

A simple analyzing system has been developed to measure the energy spread of the beam extracted from the JAERI AVF cyclotron with an energy resolution of dE/E = 0.001%. The high analyzing power can be obtained with an existing deflecting magnet system in the transport line by installing three sets of slits with a minimum width of 0.01 mm and a beam intensity monitor with a Faraday cup and semiconductor detectors. These new instruments have been compactly designed to fulfill the geometrical condition of the existing beam diagnostic chambers, which are located at the object and image positions. Installation of the analyzing system was completed and a preliminary test has been carried out. This system will be used for optimization of the flat-top acceleration system to achieve the energy spread of dE/E = 0.02%, required for microbeam production.

Journal Articles

An Energy spread minimization system for microbeam generation in the JAERI AVF cyclotron

Fukuda, Mitsuhiro; Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Kamiya, Tomihiro; Oikawa, Masakazu*; Nakamura, Yoshiteru; Nara, Takayuki; Agematsu, Takashi; Ishibori, Ikuo; et al.

Nuclear Instruments and Methods in Physics Research B, 210, p.33 - 36, 2003/09

 Times Cited Count:4 Percentile:33.7(Instruments & Instrumentation)

A heavy ion microbeam with energy of hundreds MeV is a significantly useful probe for research in biotechnology. A single-ion hitting technique using a 260 MeV $$^{20}$$Ne$$^{7+}$$ microbeam is being developed at the JAERI AVF cyclotron facility for biofunction elucidation. Production of a microbeam with a spot size of one micro-meter in diameter requires reducing the energy spread of the beam to 0.02 % to minimize an effect of chromatic aberrations in focusing lenses. The typical energy spread of the cyclotron beam is around 0.1 % in an ordinary acceleration mode using a sinusoidal voltage waveform. The energy spread can be reduced by superimposing the fifth-harmonic voltage waveform on the fundamental one to generate a flattop waveform for uniform energy gain. We have designed an additional coaxial cavity to generate the fifth-harmonic voltage, coupled to the main resonator of one-fourth wavelength coaxial type. In a power test we successfully observed the fifth-harmonic voltage waveform by picking up an acceleration voltage signal.

Journal Articles

Flat-top acceleration system for the variable-energy multiparticle AVF cyclotron

Fukuda, Mitsuhiro; Kurashima, Satoshi; Okumura, Susumu; Miyawaki, Nobumasa; Agematsu, Takashi; Nakamura, Yoshiteru; Nara, Takayuki; Ishibori, Ikuo; Yoshida, Kenichi; Yokota, Wataru; et al.

Review of Scientific Instruments, 74(4), p.2293 - 2299, 2003/04

 Times Cited Count:14 Percentile:58.58(Instruments & Instrumentation)

A combination of the fundamental- and the fifth-harmonic voltages is ideally suited for flat-top acceleration in a variable-energy multi-particle cyclotron for energy-spread minimization. The flat-topping of the energy gain distribution using the fifth-harmonics has the advantages of minimizing an amplifier power, reducing power dissipation in a resonator and increasing the energy gain per turn. The flat-top acceleration system of the JAERI AVF cyclotron was designed to reduce the energy spread to 0.02 $$%$$, required for microbeam production. Tolerable fluctuations of acceleration voltages and the magnetic excitation were 2.0$$times$$10$$^{-4}$$ for the fundamental voltage, 1.0$$times$$10$$^{-3}$$ for the fifth-harmonic voltage, and 1.9$$times$$10$$^{-5}$$ for the magnetic field. In order to enhance compactness of the flat-topping cavity and to make a substantial saving of the amplifier power, optimum geometric parameters of the flat-topping cavity were determined by a cold model test and a calculation using the MAFIA code.

8 (Records 1-8 displayed on this page)
  • 1